If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-24x+23=0
a = 1; b = -24; c = +23;
Δ = b2-4ac
Δ = -242-4·1·23
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-22}{2*1}=\frac{2}{2} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+22}{2*1}=\frac{46}{2} =23 $
| 3x+28=5x+16 | | X+23=7x | | (9*x)/(10*x+40)=0.75 | | 0=(6b*b*b)-b^2-24b+4 | | 3x6=(8-3) | | x(x^2-5x)^1/3+2(x^2-5x)^4/3=0 | | 5^(1-7x)=2^x | | 72(v*v*v)=50v | | (x-8)(x-8)-(x+3)(x+3)=-15x+97 | | (75(v*v*v))=50v | | t^2=6.2t | | 3/4(2x+3)=5/8(x-2) | | X+7=x5 | | m=2,5m/2-4 | | 3x-5x+2x=-7+4 | | (4-i)^2-(1+2)^2=0 | | 4x-(8-2x)=3(x-5) | | a^2+16-10a=0 | | (4-i)^2-(1+2i)^2=0 | | 1/0.9-0.7x/0.9+0.7x=1 | | (4-i)^2-(1+2i)^=0 | | b^2-3b+4=(b+2)(b+9) | | (x-1/4)-5=(2x-3/4)+(3/4) | | Z+3=4z÷12=5 | | 1.1+x=4.3 | | 2t(t-1)+3t^2=5t^2+9t-2 | | (x*x)+((x+6)(x+6))=180 | | (x*x)+((x*x)+36)=180 | | Z+3=4z÷12 | | 7x-4+×=12 | | 9t^2-20t+9=0 | | x^2+(x+6)^2=180 |